Sporadic schizophrenia
Beyond genetics...

Dolores Malaspina, M.D., M.P.H.
Anita Steckler & Joseph Steckler Professor of Psychiatry
NYU-Bellevue Department of Psychiatry
Creedmoor Psychiatric Center, NY State OMH
Adjunct Professor of Clinical Psychiatry, Columbia University
Objectives

1. Describe new knowledge about the genetic heterogeneity of schizophrenia.

2. Describe the association between advancing paternal age and risks for psychiatric diseases.

3. Explain how gene expression is regulated by epigenetic mechanisms.

I have no conflicts of interest
Risk Factors for Psychosis

Maternal medical conditions:
 pre-eclampsia, diabetes

Prenatal Exposures:
 infection (influenza, rubella)
 Malnutrition
 stress (war, flood)
 Rh incompatibility
 Season of Birth

Obstetric conditions:
 especially hypoxia
 low birth weight
 preterm birth

Childhood / adolescence
 Cannabis
 Traumatic brain injury
 Trauma, loss, stress

Environmental Exposure:
 Urban birth
 Migration
 Lead Exposure
 Dry cleaning PERC
Family History is a Risk Factor for Psychosis

But only 15% of people with Schizophrenia have any family history of psychosis.
The case of the “Missing Heritability”
If schizophrenia is mainly genetic, how is it maintained in the population, since those with the disorder have far fewer children

It was known 100 years ago that the risk for sporadic genetic diseases was increased in the offspring of older parents

Could de novo mutations contribute to the risk for schizophrenia
New mutations were proposed as a source of the disease a half century ago. The necessary mutation rates were considered to be too high to account for its prevalence.
Most mutations arise in the male parent

As in other mammals, new mutations in humans arise in the continually replicating male germ line (Penrose, 1955).

In women, oocytes are formed before birth. There are 24 divisions, all but the last occurs during fetal life.

In men, spermatogonia divide every 16 days

→ 200 times by age 20
→ 660 by age 40
The proportion of sperm with mutations increase with the age of the male parent.
Several groups had found older fathers or late birth order in schizophrenia patients

(Johanson 1958; Gregory 1959; Farina 1963; C Schooler 1964; Bojanovsky & Gerylovova 1967; Hare & Moran 1979; Kinnell 1983; Bertranpetit & Fananas 1993...)

They were interpreted as reflecting a late marriage age for psychiatrically vulnerable parents or the result of methodological difficulties.

These well replicated findings were used to support the hypothesis that maternal unavailability and family environment contributed to schizophrenia.
Mutations from older fathers & heritable disease

Autosomal Dominant:
Achondroplasia, Neurofibromatosis, Marfan Syndrome, Osteogenesis Imperfecta, Apert, Cruzen, and Pfeiffer Syndrome....

X-linked conditions,
Fragile X syndrome, Hemophilia, Muscular Dystrophy...

Complex Disorders:
Congenital Heart Defects, Neural Tube Defects, Mental Retardation, Cerebral Palsy, Prostate Cancer, Retinoblastoma, Wilms Tumor, Renal Agenesis, Progeria, Torsion Dystonia, Alzheimer's Disease....
Jerusalem Perinatal Cohort Study:
A prospective population birth cohort study of all ~100,000 births in Jerusalem: 1964-1976

Cohort data cross-linked to Israel’s Psychiatric Case Registry
Paternal age accounted for a quarter of schizophrenia risk in the population

Parental birth age, in years, corrected for other parent’s age

Malaspina 2001
Schizophrenia and Paternal Age versus Downs Syndrome and Maternal Age

Schizophrenia
(by age 21)

<table>
<thead>
<tr>
<th>Father’s Age</th>
<th>Predicted Incidence per 1000</th>
</tr>
</thead>
<tbody>
<tr>
<td><25</td>
<td>1/192</td>
</tr>
<tr>
<td>25-29</td>
<td>1/169</td>
</tr>
<tr>
<td>30-34</td>
<td>1/131</td>
</tr>
<tr>
<td>34-40</td>
<td>1/115</td>
</tr>
<tr>
<td>40-44</td>
<td>1/94</td>
</tr>
<tr>
<td>45-50</td>
<td>1/61</td>
</tr>
<tr>
<td>50+</td>
<td></td>
</tr>
</tbody>
</table>

Down’s Syndrome

<table>
<thead>
<tr>
<th>Mother’s age</th>
<th>Incidence per 1000</th>
</tr>
</thead>
<tbody>
<tr>
<td><25</td>
<td>1/1925</td>
</tr>
<tr>
<td>25-29</td>
<td>1/1205</td>
</tr>
<tr>
<td>30-34</td>
<td>1/805</td>
</tr>
<tr>
<td>34-40</td>
<td>1/363</td>
</tr>
<tr>
<td>40-44</td>
<td>1/110</td>
</tr>
<tr>
<td>45-50</td>
<td>1/32</td>
</tr>
<tr>
<td>50+</td>
<td>1/12</td>
</tr>
</tbody>
</table>

Malaspina et al, 2002
Supportive evidence from military data on healthy adolescents, APA IQ and paternal age

- reduced performance IQ with preserved verbal IQ
 Malaspina et al, 2005

- significantly lower social competency scores
 Weiser et al, 2008

With later paternal age:
- lower nonverbal IQ
- no effect on verbal IQ
Paternal age was related to autism and explained in the increased risk for autism in Israel

Reichenberg et al, 2006

http://www.plosone.org/article/info:doi/10.1371/journal.pone.0024771
Paternal exposures could increase point mutations in spermatozoa

Ionizing radiation exposure
Free radicals and oxidative stress
Decreased DNA repair enzymes
Arteriosclerosis
Nutritional deficiencies
Smoking, Alcohol, Narcotics
Lead, cadmium, anesthetic gas
Agent orange ?, estrogen ?
Hyperthermia
Accumulation of private neutral variations + pathogenic variants with mild effects occurs over several generations through selection.
Parents of cases with a family history were actually younger than sporadic cases.

ANOVA maternal & paternal ages by group: $F=3.15$, $p=.047$; $F=3.87$, $p=.02$.

Malaspina et al 2002
regions of decreased perfusion

Sporadic Schizophrenia
Middle, inferior, orbital PFC anterior cingulate and insula paracingulate cortices

Familial Schizophrenia
Superior & inferior parietal lobule, gyri of the middle & superior temporal lobe.

COMPARING GROUPS:
Sporadic cases had lower rCBF in left anterior cingulate and medial frontal gyrus than familial cases.

Malaspina et al, 2004
Decreased rCBF: ACC, middle, inferior, and frontal gyri, and medial frontal and insula.

For PARS vs. healthy controls

MRS: SZ cases vs controls
Deficit in rostral concentrations of neurons in rostral vs caudal Anterior Cingulate Cortex.

- 68% sensitive and 91% specific for cases vs controls.

Malaspina et al 2005

Hardy et al 2011

Subregions of the ACC.
Red: rostral
Green: caudal
Chronic Psychosis: Syndrome with many causes

Separating out Subtypes

Paternal Age Related Schizophrenia

Other Schizophrenia

Etiologies

Genes.. prenatal exposures..
Cannabis…
Traumatic brain injury.
obstetric complications..
Stress sensitivity
stress..
infectious agents…
Advancing paternal age predicts better treatment response in 200 adolescents with schizophrenia

Intent to treat analysis
R = -0.17; p = 0.02; n = 160

Older paternal age for responders (≥20% symptom reduction) than non-responders

Opler, Malaspina et al, in press
The findings support the idea that paternal age is an etiology for a specific type of schizophrenia.

Fathers age was related to treatment response in psychotic adolescents, but not to onset age or initial symptom severity. This study provide evidence of differential treatment response in association with etiology in adolescents with older parents.

The data supports the hypothesis that parental ages produce a subtype in the offspring that is more treatment responsive.

Paternal age was significantly correlated to improvement in positive symptoms and maternal age significantly related to negative symptoms.

Overall correlations were small, but significant, and have the potential to impact treatment effects when applied to larger populations and longer treatment durations.
In the Jerusalem Cohort:
Half of the cases without a family history had a mutation in a gene that was not present in their mother of father. (Malaspina unpublished)

Do paternal life-course exposures play a role?
Telomere Lengths

Telomeres are the protective caps at the end of chromosomes.

Telomere length determines the number of cell divisions a stem cell can undergo.

Shortening of telomeres \rightarrow activates cell death. Risk for cardiovascular disease.

Cancer cells have this enzyme \rightarrow too long telomeres increase cancer risk

Telomeres are usually lengthened with later paternal age.
Are telomeres longer or shorter in schizophrenia?
Copy Number Variation

CNV:
variation in number of copies from the normal two copies of each gene, or of large sequences of DNA, increased in the genome of individuals with psychiatric diseases?
Modern Genetics

Francis Crick shows James Watson the model of DNA.

Rosalind Franklin used X-ray crystallography to study DNA structure.
DNA (gene)

Transcription

mRNA

RNA processing (splicing etc)

Translation

mRNA

Folding

Protein

Post translational modifications

Proteolysis

Peptides/amino acids
Central dogma of molecular biology

DNA → RNA → protein

No longer explains the data

DNA → RNA → protein
Epigenetic mechanisms control gene expression without altering the DNA sequence.

Like DNA sequence, epigenetic factors are critically important for cell functioning and some can be inherited.

Unlike DNA sequence, epigenetic mechanisms can change during development, and some can derive from environmental exposures of the fetus, parents, and grandparents.
Genetics → Epigenetics

1953

2013
Darwin's *Origin of Species* did propose natural selection as the main evolutionary mechanism, but did not exclude a type of Lamarckism as well.
Epigenetic mechanisms can be inherited along with DNA sequences

Klar 1998; Rakyan et al. 2002
DNA methylation can decrease transcription

Scenario ‘A’

Scenario ‘B’ with methylation

No expression

No protein
A number of epigenetic mechanisms are being discovered that control gene expression.
Well, that clears it up!
Epigenetic code
Epigenetic Influences

Fetal Programming by Prenatal Stress

The fetus does not develop from a blueprint of its DNA
The expression of imprinted genes is based on the sex of the parent of origin.

Maternal and paternal genomes are not functionally equivalent; both required for development.

Imprinted genes are differentially silenced in the germ cells based on parental sex.

Paternal alleles essential for extraembryonic tissues and for fetal growth and behavior.
Genomic imprinting

Maternal alleles:
Many curb fetal growth, thereby permitting maternal health and resources for multiple offspring. (e.g. *Igf2R, Mash2, Gnas*)

Paternal alleles:
Usually favor offspring growth, daughters social behavior and nurture. The placenta has numerous paternally expressed genes (e.g. *Igf2, Peg3*) that promote fetal growth and nutrient uptake, even to the detriment of mother.
Genomic imprinting
Genetic mechanism for resolving conflict between different parental requirements for reproductive success?

The exception that proves the rule:
Liger - cross breeding a female Tiger to a male Lion.
Tigon - cross breeding a female Lion to a male Tiger.
The Life Long Plastic Brain

Parents germ cells

fetal Development Childhood Adolescence Adulthood

Fetal Programming
Prenatal Exposures

Risk effects of trauma, substance abuse, injury...

Protective effects of nurture, education,
“It Seems the Fertility Clock Ticks for Men, Too”
Dedicated to the Critical Ability to Connect

www.InspiresConnects.org